

Title of Student's Thesis

Semestral Project

Author: Bc. FIRSTNAME LASTNAME

Advisor: prof. Ing. FIRSTNAME LASTNAME, CSc.

Brno, 15 June 2033

Goals

- Study
- Describe
 - the studied
- Implement
 - older
 - new
- Compare, evaluate
 - results

The key tool in this thesis is the Euler formula

$$e^{jx} = \cos x + j \sin x$$

The Euler identity is the special case of the above, with $x = \pi$:

Euler identity

$$e^{j\pi} = \cos \pi + j \sin \pi$$

from which it follows that

$$e^{j\pi}+1=0.$$

Depicted model contains:

- Board
- Signals
- Battery

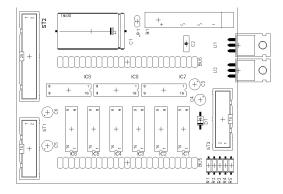


Table 1: Results of measurement in mobile networks

Technology	Speed, download [kB/s]	Speed, upload [kB/s]
GPRS (2,5G)	7,2	3,6
UMTS 3G	48	48
HSPA (3,5G)	1 706	720
LTE (4G)	40 750	10 750

Conclusion

Thank you for your attention!

Bc. FirstName LastName Title of Student's Thesis 6 / 7

Questions of the Opponent

Is there some relationship between your formula (1.2) and integral Maxwell equations?

Well, yes, it might be . . .